SERS-based immunoassay using a gold array-embedded gradient microfluidic chip.

نویسندگان

  • Moonkwon Lee
  • Kangsun Lee
  • Ki Hyung Kim
  • Kwang W Oh
  • Jaebum Choo
چکیده

Here we report the development of a programmable and fully automatic gold array-embedded gradient microfluidic chip that integrates a gradient microfluidic device with gold-patterned microarray wells. This device provides a convenient and reproducible surface-enhanced Raman scattering (SERS)-based immunoassay platform for cancer biomarkers. We used hollow gold nanospheres (HGNs) as SERS agents because of their highly sensitive and reproducible characteristics. The utility of this platform was demonstrated by the quantitative immunoassay of alpha-fetoprotein (AFP) model protein marker. Our proposed SERS-based immunoassay platform has many advantages over other previously reported SERS immunoassay methods. The tedious manual dilution process of repetitive pipetting and inaccurate dilution is eliminated with this process because various concentrations of biomarker are automatically generated by microfluidic gradient generators with N cascade-mixing stages. The total assay time from serial dilution to SERS detection takes less than 60 min because all of the experimental conditions for the formation and detection of immunocomplexes can be automatically controlled inside the exquisitely designed microfluidic channel. Thus, this novel SERS-based microfluidic assay technique is expected to be a powerful clinical tool for fast and sensitive cancer marker detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capillary-driven surface-enhanced Raman scattering (SERS)-based microfluidic chip for abrin detection

Herein, we firstly demonstrate the design and the proof-of-concept use of a capillary-driven surface-enhanced Raman scattering (SERS)-based microfluidic chip for abrin detection. The micropillar array substrate was etched and coated with a gold film by microelectromechanical systems (MEMS) process to integrate into a lateral flow test strip. The detection of abrin solutions of various concentra...

متن کامل

Simultaneous detection of duplex DNA oligonucleotides using a SERS-based micro-network gradient chip.

We report the development of a programmable surface-enhanced Raman scattering (SERS)-based micro-network gradient platform to simultaneously detect two different types of DNA oligomer mixtures. The utility of this platform was demonstrated by quantitative analysis of two breast cancer-related (BRCA1) DNA oligomer mixtures. To generate on-demand concentration gradients, the microfluidic circuit ...

متن کامل

High-throughput immunoassay through in-channel microfluidic patterning.

We have developed an integrated microfluidic immunoassay chip for high-throughput sandwich immunoassay tests. The chip creates an array of reactive patterns through mechanical protection by actuating monolithically embedded button valves. We have demonstrated that this chip can achieve highly sensitive immunoassay tests within an hour, and requires only microliter samples.

متن کامل

Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels.

This work reports an optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels. Plasmonic nanoprobes with rich electromagnetic hot spots are selectively patterned along PDMS microfluidic channels by using a Scotch tape removal and oxygen plasma treatment, which also provide the permanent bonding between PDMS and a glass substrate. A silver film with an initial thi...

متن کامل

Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection.

We present a microfluidic surface-enhanced Raman scattering (SERS) sensor for rapid and label-free biomolecular detection. Our sensor design mitigates a common limiting factor in microfluidic SERS sensors that utilize integrated nanostructures: low-efficiency transport of biomolecules to nanostructured surface which adversely impacts sensitivity. Our strategy is to increase the total usable nan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 12 19  شماره 

صفحات  -

تاریخ انتشار 2012